Two Synechococcus genes, Two Different Effects on Cyanophage Infection
نویسندگان
چکیده
Synechococcus is an abundant marine cyanobacterium that significantly contributes to primary production. Lytic phages are thought to have a major impact on cyanobacterial population dynamics and evolution. Previously, an investigation of the transcriptional response of three Synechococcus strains to infection by the T4-like cyanomyovirus, Syn9, revealed that while the transcript levels of the vast majority of host genes declined soon after infection, those for some genes increased or remained stable. In order to assess the role of two such host-response genes during infection, we inactivated them in Synechococcus sp. strain WH8102. One gene, SYNW1659, encodes a domain of unknown function (DUF3387) that is associated with restriction enzymes. The second gene, SYNW1946, encodes a PIN-PhoH protein, of which the PIN domain is common in bacterial toxin-antitoxin systems. Neither of the inactivation mutations impacted host growth or the length of the Syn9 lytic cycle. However, the DUF3387 mutant supported significantly lower phage DNA replication and yield of phage progeny than the wild-type, suggesting that the product of this host gene aids phage production. The PIN-PhoH mutant, on the other hand, allowed for significantly higher Syn9 genomic DNA replication and progeny production, suggesting that this host gene plays a role in restraining the infection process. Our findings indicate that host-response genes play a functional role during infection and suggest that some function in an attempt at defense against the phage, while others are exploited by the phage for improved infection.
منابع مشابه
Viruses Inhibit CO2 Fixation in the Most Abundant Phototrophs on Earth
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most numerous photosynthetic organisms on our planet [1, 2]. With a global population size of 3.6 × 10(27) [3], they are responsible for approximately 10% of global primary production [3, 4]. Viruses that infect Prochlorococcus and Synechococcus (cyanophages) can be readily isolated from ocean waters [5-7] and freq...
متن کاملCultivating Bacteria's Taste for Toxic Waste
August 2006 | Volume 4 | Issue 8 | e264 Among the wealth of microbial organisms inhabiting marine environments, cyanobacteria (blue-green algae) are the most abundant photosynthetic cells. Prochlorococcus and Synechococcus, the two most common cyanobacteria, account for 30% of global carbon fi xation (through the photosynthetic process in which sugars are manufactured from carbon dioxide and wa...
متن کاملMelanopsin Photopigment Comes in Two Distinct Forms
August 2006 | Volume 4 | Issue 8 | e264 Among the wealth of microbial organisms inhabiting marine environments, cyanobacteria (blue-green algae) are the most abundant photosynthetic cells. Prochlorococcus and Synechococcus, the two most common cyanobacteria, account for 30% of global carbon fi xation (through the photosynthetic process in which sugars are manufactured from carbon dioxide and wa...
متن کاملInhibiting Hedgehog: New Insights into a Developmentally Important Signaling Pathway
August 2006 | Volume 4 | Issue 8 | e264 Among the wealth of microbial organisms inhabiting marine environments, cyanobacteria (blue-green algae) are the most abundant photosynthetic cells. Prochlorococcus and Synechococcus, the two most common cyanobacteria, account for 30% of global carbon fi xation (through the photosynthetic process in which sugars are manufactured from carbon dioxide and wa...
متن کاملWnt Sets the Stage for Spinal Cord Patterning in the Chick
August 2006 | Volume 4 | Issue 8 | e264 Among the wealth of microbial organisms inhabiting marine environments, cyanobacteria (blue-green algae) are the most abundant photosynthetic cells. Prochlorococcus and Synechococcus, the two most common cyanobacteria, account for 30% of global carbon fi xation (through the photosynthetic process in which sugars are manufactured from carbon dioxide and wa...
متن کامل